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Eigenvector Analysis for Multipath
Grant No. FA8750-05-1-0226

Final Report

Edmond Rusjan

Nov 12, 2005

This research analyses the properties of singular vectors of circulant matrices. In
particular, it proves that the singular values of circulant matrices are doubly degen-
erate. This results in a V pattern in the Fourier transform of the singular vectors.
An additional structure in the Fourier space is observed and proven. These results
provide a rigorous and firm foundation for the use of the Fourier space structures in
the analysis of multipath.

1 Introduction and Background

This section introduces the notation and describes the necessary background to make
the discussion in the rest of the report self contained and easier to follow.

1.1 Eigenvalue/Eigenvector Decomposition

Many problems in applied mathematics, science and engineering lead to the eigen-
value - eigenvector problem[Strang86]:

A~x = λ~x (1)

where A is an n by n given matrix and where the unknowns are the eigenvalues λ
and the (nontrivial) eigenvectors ~x. Eq. (1) is nonlinear, because λ multiplies ~x. If
we can discover λ, then the equation for ~x is linear[Strang88]:

(A− λI)~x = ~0 (2)

The key to the problem is to notice:

1. The vector ~x is in the nullspace of A− λI
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2. The number λ is chosen so that A− λI has a (nontrivial) nullspace.

The eigenvalue - eigenvector problem of Eq. (1) is closely related to the problem
of matrix diagonalization, also called the eigenvalue - eigenvector decomposition
(EVD):

A = XΛX−1 (3)

where the diagonal matrix Λ = diag(λ1, . . . , λn) is the eigenvalue matrix and the
matrix X is the eigenvector matrix whose columns are the eigenvectors ~x1, . . . , ~xn.

1.1.1 EVD Existence

Not all matrices are diagonalizable. For example, the matrix:[
0 1
0 0

]
(4)

is not diagonalizable. This is so because the eigenvalue λ = 0 has algebraic multi-
plicity 2 and geometric multiplicity 1, i.e., it has only one independent eigenvector
and we cannot construct X.

A matrix is diagonalizable iff it has n linearly independent eigenvectors, i.e., a
complete set of eigenvectors. For example, any matrix with distinct eigenvalues is
diagonalizable. Matrices who do not have a complete set of eigenvectors are called
defective.

1.1.2 EVD (Non)uniqueness

The eigenvector matrix X is not unique, because any (nonzero) multiple of an eigen-
vector is again an eigenvector. Therefore any column of X can be multiplied by a
(nonzero) constant and produce a new eigenvector matrix X. In addition, in the case
of repeated eigenvalues, there is even more freedom. Any (nonzero) linear combina-
tion of eigenvectors corresponding to the repeated eigenvalue is again an eigenvector
corresponding to that eigenvalue. Therefore such linear combinations of columns of
X yield new eigenvector matrices X. In the extreme example, where A = I, the
identity matrix, any inverible matrix X is an eigenvector matrix.

1.1.3 Eigenvalue/Eigenvector Ordering

The eigenvalues on the diagonal of the eigenvalue matrix Λ can be ordered arbitrarily
as long as the corresponding eigenvectors appear in the same order as columns of
the eigenvector matrix X. In the case of a repeated eigenvalue, the order of the
corresponding eigenvectors is arbitrary.
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1.1.4 Complex Eigenvalues/Eigenvectors

Eigenvalues and eigenvectors of real matrices may be complex. For example, consider
the EVD of the rotation matrix:[

0 −1
1 0

]
=

[
1 1
−i i

] [
i 0
0 −i

] [
1 1
−i i

]−1

(5)

Symmetric matrices have real eigenvalues and eigenvectors, so their EVD involves
real Λ and X.

1.1.5 Normal Matrices and Their Eigenvalues/Eigenvectors

A matrix N is normal if it commutes with its Hermitian (complex conjugate trans-
pose), i.e., if NNH = NHN . Normal matrices are exactly those which possess a
complete set of orthonormal eigenvectors. Therefore the EVD Eq.(3) has a special
form for normal matrices:

N = UΛUH (6)

where the matrix U is unitary and consequently U−1 = UH . Examples of normal
matrices are symmetric matrices, skew symmetric matrices, Hermitian and skew
Hermitian matrices, orthogonal and unitary matrices. If N = S is symmetric, then
U = Q is orthogonal and Eq.(6) becomes:

S = QΛQT (7)

because QH = QT .

1.2 Singular Value/Vector Decomposition

Singular Value/Vector Decomposition (SVD) is the generalization of the EVD of a
symmetric matrix Eq.(7) to cases where the EVD does not exist and in particular
to rectangular matrices. Any m by n matrix A can be factored into:

A = Q1ΣQT
2 = (orthogonal)(diagonal)(orthogonal) (8)

where we have now two orthogonal matrices Q1 and Q2 (not necessarily transposes of
each other) instead of one. The diagonal matrix Σ is called the singular value matrix
and its entries σi are called the singular values. Singular values are nonnegative and
σ1, σ2, . . . , σr, where r is the rank of A are positive.

The orthogonal matrices Q1 and Q2 are called the left and right singular vector
matrices, respectively, and the columns are the (left and right) singular vectors.

The key to working with rectangular matrices A is, almost always, to consider
AT A and AAT . The r nonzero sigular values σ1, σ2, . . . , σr are the positive square
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roots of the nonzero eigenvalues of both AT A and AAT . The columns of Q1 (m
by m) are eigenvectors of AAT and the columns of Q2 (n by n) are eigenvectors of
AT A.

For positive definite matrices, the SVD (Eq.8) is identical to the EVD (Eq.7).
For indefinite matrices, any negative eigenvalues in Λ become positive in Σ. For
example:  2 0

0 −3
0 0

 =

 1 0 0
0 −1 0
0 0 1


 2 0

0 3
0 0

 [
1 0
0 1

]
(9)

For complex matrices Σ remains real, but Q1 and Q2 become unitary. Then
(Eq.8) becomes:

A = U1ΣUT
2 = (unitary)(diagonal)(unitary) (10)

The columns of Q1 and Q2 give orthonormal basis for all four fundamental sub-
spaces:

first r columns of Q1: column space of A
last m-r columns of Q1: left nullspace of A
first r columns of Q2: row space of A
last n-r columns of Q2: nullspace of A

(11)

The SVD chooses these bases in an extremely special way. They are more than just
orthonormal. If A multiplies a column of Q2, it produces a multiple of a column of
Q1. This comes directly from AQ2 = Q1Σ, looked at a column at a time.

The connections with AAT and AT A and must hold if the formula Q1ΣQT
2 is

correct. That is easy to see:

AAT = (Q1ΣQT
2 )(Q2Σ

T QT
1 ) = Q1ΣΣT QT

1 and similarly AT A = Q2Σ
T ΣQT

2

(12)
and similarly .

From the first, Q1 must be the eigenvector matrix for AAT . The eigenvalue
matrix in the middle is ΣΣT - which is m by m with σ2

1, . . . , σ
2
r on the diagonal.

From the second, Q2 must be the eigenvector matrix for AT A. The diagonal matrix
ΣT Σ has the same σ2

1, . . . , σ
2
r , but it is n by n.

To stress the fact that A may be orthogonal, let us consider an example with a
single column:  −1

2
2

 =

 −1
3

2
3

2
3

2
3

−1
3

2
3

2
3

2
3

−1
3


 3

0
0

 [
1

]
(13)

Here AT A is 1 by 1, while AAT is 3 by 3. They both have eigenvalue 9, whose
square root is 3 in Σ. The two zero eigenvalues of AAT leave some freedom for the
eigenvectors in the second and third columns of Q1. There are many choices which
keep the matrix Q1 orthogonal.
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1.2.1 SVD (Non)uniqueness

In general, the SVD is not unique. For example, consider A which is already or-
thogonal, i.e., A = Q. Then the singular value matrix must be the identity matrix:
Σ = I. This allows a lot of freedom for the decomposition. For example, A = QII
or A = IIQ or even A = (QQ2)IQT

2 .

1.2.2 SVD Existence

We prove the existence by explicit construction. For arbitrary matrix A we need
to find a diagonal matrix Σ and two orthogonal matrices Q1 and Q2 such that
A = Q1ΣQT

2 .
Consider the n by n matrix AT A. Since it is symmetric, it has a complete set of

orthonormal eigenvectors ~x1, . . . , ~xn and correponding eigenvalues λ1, . . . , λn. Since
AT A is nonnegative definite, its r nonzero eigenvalues are positive and we can define:

σj =
√

λj and ~qj =
A~xj

σj

j = 1, . . . , r (14)

Then, using Eq. (14):

Q2 = [~x1|~x2| . . . |~xn] Σ = diag(σ1, σ2, . . . , σr) Q1 = [~q1|~q2| . . . |~qm] (15)

It is obvious that Q2 is orthogonal and that Σ is diagonal. We need to check
that Q1 is orthogonal and that Q1ΣQ2 = A. Q1 is orthogonal because its columns
~qi are orthonormal:

~qT
i ~qj =

~xT
i AT Axj

σiσj

=
λi~xi~xj

σiσj

= δij (16)

Check that the SVD actually gives us A:

~qT
i ~qj =

~xT
i AT Axj

σiσj

=
λi~xi~xj

σiσj

= δij (17)

To check that Q1ΣQT
2 = A we note that the SVD can be written as a sum of

rank 1 transformations:

Q1ΣQT
2 = ~q1σ1~x1 + ~q2σ2~x2 + . . . + ~qrσr~xr (18)

To Q1ΣQT
2 = A it is enough to check that both sides act the same way on basis

vectors. For ~xj a basis vector in the row space:

Q1|SigmaQT
2 ~xj = (~q1σ1~x1 + ~q2σ2~x2 + . . . + ~qrσr~xr)~xj = ~qjσj =

A~xj

σj

σj = A~xj (19)

For a basis vector in the nullspace, both sides are zero. This completes the proof.
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1.2.3 SVD Intuition

To summarize, the SVD takes the rigth singular vectors (eigenvectors of AT A), scales
them by the singular values and ”rotates them” into the left singular vectors:

A = Q1ΣQT
2 = (rotate)(scale)(project onto AT A eigenvectors) (20)

1.3 Circulant Matrices

An m by m matrix C is called circulant if each row of C can be obtained from theh
previous row by circular rotation of elements, i.e., if we shift each element in the
i-th row over one column, with the element in the last column being shifted back to
the first column, we get the (i + 1)st row, unless i = m, in which case we get the
first row.[Moon00] Thus the circulant matrix generated by (c1, c2, . . . , cm) is:

C =


c1 c2 c3 . . . cm

cm c1 c2 . . . cm−1

cm−1 cm c1 . . . cm−2

. . .
c2 c3 c4 . . . c1

 (21)

and is denoted for short C = circ(c1, c2, . . . , cm) = circ(~c)[Schott97].
Apart from the identity matrix I, the simplest circulant matrix is the permuta-

tion or the shift matrix:
Π = circ(0, 1, 0, . . . , 0) (22)

Any circulant matrix C can be expressed as a polynomial in the shift matrix Π:

C = c1I + c2Π + . . . + cmΠm−1 = p~c(Π) (23)

Every circulant matrix C is diagonalized by the discrete Fourier transform matrix
F :

F =


1 1 1 . . . 1
1 ω ω2 . . . ωm−1

1 ω2 ω4 . . . ω2(m−2)

. . .
1 ωm−1 ω2(m−1) . . . ω(m−1)(m−1)

 (24)

where ω = e
−j2π

m . This gives the EVD:

C =
1

n
FΛFH (25)

with an explicit formula for the eigenvalues:

Λ = diag(p~c(1), p~c(ω), . . . , p~c(ω
m−1)) (26)

We will find this formula very useful for calculating the EVD.
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2 The F 2 Structure

In the analysis of multipath several structures have been observed in the Fourier
space of the singular vectors of the data matrix[Larue04]. This opens two questions:
what is the origin of these structures and how can they be used to improve the
algorithms for the multipath detection.

In order to understand the more complicated structures which appear in realistic
data, the simpler and generic data independent structures need to be understood
first. We believe the simplest of these structures is what we call the F 2 structure
which we describe and explain now. It emerges when we study the eigenvectors of
a generic circulant matrix C in the Fourier space.

The eigenvectors of a circulant matrix C are the columns of the Fourier matrix F
(Eq.??). They are associated with a definite frequency. Suppose we want to analyze
these eigenvectors in the Fourier space. That means taking their discrete Fourier
transform, i.e., multiplying them by the DFT matrix, which is exactly the Fourier
matrix F . In matrix form, this corresponds to FF = F 2.

We want to explain the structure which we observe by plotting the DFT of the
eigenvectors, i.e., the F 2. The structure has a dot in the (0, 0) corner and a line
along the (0, n) to (n, 0) diagonal.

By direct calculation:

(F 2)ij =
n−1∑
k=0

ωikωkj =
n−1∑
k=0

(ωi+j)k =
(ωi+j)n − 1

ωi+j − 1
=

(ωn)i+j − 1

ωi+j − 1
= 0 (27)

as long as ωi+j 6= 1. Here we used the summation formula for the first n terms of a
geometric series and the fact that ωn = 1. Therefore, the only nonzero elements of
F 2 are those where ωi+j = 1. This can happen in two cases:

1. i = j = 0: This explains the dot in the (0, 0) corner of the matlab ”imagesc”
picture of the F 2 matrix

2. i + j = n: This explains the straight line along the (0, n) - (n, 0) diagonal of
F 2

In both cases:
n−1∑
k=0

(ωi+j)k =
n−1∑
k=0

1 = n (28)

3 SVD of Circulant Matrices

This section illustrates intuitively, on an example, why the singular values of a
circulant matrix come in pairs.
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Let

C =


1 2 0 0
0 1 2 0
0 0 1 2
2 0 0 1

 = I + 2Π (29)

where Π is the permutation matrix:

Π =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 (30)

Then CT = I + ΠT = I + Π3 and

CT C = CCT = 5I + 2S + 2S3 =


5 2 0 2
2 5 2 0
0 2 5 2
2 0 2 5

 (31)

To study the SVD C = Q1ΣQT
2 , we look at CT C and CCT , because

CT C = (Q2Σ
T QT

1 )(Q1ΣQT
2 ) = Q2Σ

2QT
2 (32)

CCT = (Q1ΣQT
2 )(Q2Σ

T QT
1 ) = Q1Σ

2QT
1 (33)

and in general the singular values of C are the square roots of the eigenvalues of
CT C (or CCT , they are the same), the singular vectors of C are the eigenvectors of
CT C and the left singular vectors of C are the eigenvectors of CCT . For the special
case of a circulant matrix, because of CT C = CCT , the singular vectors and the left
singular vectors are the same, i.e., Q1 = Q2.

So let us compute the eigenvalues of CT C by Moon’s theorem λi = pCT C(ωi) =

5 + 2ωi + 2ω−i, where ω = e−
j2π
4 = −j:

λ0 = 5 + 2 + 2 = 9 (34)

λ1 = 5− 2j + 2j = 5 (35)

λ2 = 5− 2− 2 = 1 (36)

λ3 = 5 + 2j − 2j = 5 (37)

Note that λ1 = λ3. In general, it will be true that λi = λn−i, because the polynomial
pCT C is symmetric under i → n− i.

The CT C is diagonalized by a Fourier matrix CT C = 1
4
FΛFH , or explicitly:

CT C =


5 2 0 2
2 5 2 0
0 2 5 2
2 0 2 5

 (38)
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=
1

4


1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j




9 0 0 0
0 5 0 0
0 0 1 0
0 0 0 5




1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j

 (39)

Note that CT C has (at least) two diagonalizations, namely Eq. (33) and Eq.
(39). Since diagonalization is essentially unique, i.e., up to a change of basis, the
first (if we start counting with zero) and third column of Q2 are linear combinations
of the first and third column of F . Since Q2 is real, we can simply take the real and
imaginary part of the corresponding columns of F .

More explicitly, consider the spectral decomposition of CT C:

CT C =
9

4


1
1
1
1

 [
1 1 1 1

]
+

1

4


1
−1
1
−1

 [
1 −1 1 −1

]
(40)

+
5

4




1
−j
−1
j

 [
1 j −1 −j

]
+


1
j
−1
−j

 [
1 −j −1 j

] (41)

The two terms in parenthesis are complex conjugates of each other, so we can replace
them with twice the real part of the first. In addition, rewrite the complex Fourier
vector as a sum of two real waves:

1
−j
−1
j

 =


1
0
−1
0

− j


0
1
0
−1

 (42)

This allows us to rewrite the parenthesis as

2Re




1
−j
−1
j

 [
1 j −1 −j

] (43)

= 2




1
0
−1
0

 [
1 0 −1 0

]
+


0
1
0
−1

 [
0 1 0 −1

] (44)
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Finally, CT C can be rewritten as:

CT C =
9

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 +
1

4


1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1

 (45)

+
5

2


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

 +
5

2


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

 =


5 2 0 2
2 5 2 0
0 2 5 2
2 0 2 5

 (46)

which checks.
Singular values of C are square roots of the eigenvalues of CT C, so:

Σ =


3 0 0 0

0
√

5 0 0

0 0
√

5 0
0 0 0 1

 (47)

Q2 is orthogonal, so need to make columns length 1:

Q2 =


1
2

1√
2

0 1
2

1
2

0 1√
2

−1
2

1
2
− 1√

2
0 1

2
1
2

0 − 1√
2
−1

2

 (48)

Note that we reordered the singular vectors as we are putting them into columns of
Q2 in order to be aligned with the singular values, which are ordered from largest
to smallest.

To find Q1, compute CQ2:

CQ2 =


1 2 0 0
0 1 2 0
0 0 1 2
2 0 0 1




1
2

1√
2

0 1
2

1
2

0 1√
2

−1
2

1
2
− 1√

2
0 1

2
1
2

0 − 1√
2
−1

2

 =


3
2

1√
2

2√
2

−1
2

3
2
− 2√

2
1√
2

1
2

3
2
− 1√

2
− 2√

2
−1

2
3
2

2√
2

− 1√
2

1
2

 (49)

and then divide the columns by the corresponding singular values to make them
orthonormal, so

Q1 =


1
2

1√
10

2√
10

−1
2

1
2
− 2√

10
1√
10

1
2

1
2
− 1√

10
− 2√

10
−1

2
1
2

2√
10

− 1√
10

1
2

 (50)
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Check:

C =


1 2 0 0
0 1 2 0
0 0 1 2
2 0 0 1

 (51)

=


1
2

1√
10

2√
10

−1
2

1
2
− 2√

10
1√
10

1
2

1
2
− 1√

10
− 2√

10
−1

2
1
2

2√
10

− 1√
10

1
2




3 0 0 0

0
√

5 0 0

0 0
√

5 0
0 0 0 1




1
2

1
2

1
2

1
2

1√
2

0 − 1√
2

0

0 1√
2

0 − 1√
2

1
2

−1
2

1
2

−1
2

 (52)

3.1 The V Conjecture

While one example is obviously not the proof, the hope is that we can prove that
circulant matrices have singular values occuring in pairs, with the exception of λ0

and, for even n, λn
2
. The singular vectors are linear combinations of only two Fourier

vectors. This is what gives two bright spots in the DFT of singular vectors. In cases
where the Fourier coefficients decay monotonically with frequency, we get the ”V”
pattern.

3.2 The W Conjecture

In order to get the ”‘W”’ pattern, which is empirically observed in many examples,
we need more degeneracy, i.e., more singular values the same. We conjecture that
the class of circulant matrices generated by a sinusoidal wave vector has the singular
values sigmas (and therefore lambdas) come in groups of 4. Furthermore, the largest
singular values correspond to the frequencies of the sinusoidal wave and the rest of
the singular values decay monotonically with the distance from this frequency. This
produces the structure shaped like the letter W.

4 Conclusion and Future Plans

This research provides additional evidence that the singular vector structures in the
Fourier space, first observed and studied by James Larue[Larue04], are robust and
relevant for the analysis of multipath. The existence of two of these structures is
proven and their origin explained. Several more structures have been observed and
we believe they deserve further study. In addition, the question of how to best use
these structures to detect multipath is a promising direction for future research.
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